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Abstract

Energy loss measurements were recently performed on the superconducting
Quadrupole Mirror Magnet, TQM-03, at 4.2K. These studies were done at the Fermilab
Vertical Magnet Test Facility (VMTF) located in Technical Division's IBIl. For
measuring and calculating the energy losses a PXI based data acquisition system was
used, which was written in National Instruments LabView version 8.6. Several
parameters were investigated in order to characterize and optimize the system
performance. The dependence of energy losses verse the ramp rate, the sampling rate and
the period of integration was investigated at magnet temperature 4.2 K.

Introduction

Superconducting magnets are used to bend and focus charged particle beams, for
example, the protons and anti-protons in the Tevatron in the Fermilab laboratory. Due to
zero resistance of these magnets current can be passed through them almost without any
energy losses. But if non-constant current is applied to the superconducting magnets the
energy losses are always exist. It can be magnetization (or hysteresis) loss and resistive
(or eddy current) loss. The value of energy losses in the magnet is important thing
because of several reasons. First of all, it is helpful for understanding how much heat
should we carry off for providing the heat abstraction and also it is necessary for magnet
design.

Theory

There are two types of energy losses: magnetization (or hysteresis) loss and
resistive (or eddy current) loss. The first one depends on the maximum magnetic
induction and is associated with the hysteresis loop. In the main case, superconducting
samples can be divided into two parts: the volume part and tine surface part where image
current circulate. Due to this persistent current the values of the inner and the outer
magnetic field are not the same, which is the reason for the existence of a hysteresis loop.
The second type of energy losses is the resistive loss. Technically, superconductors must
be stabilized by incorporating into the wires and composites a matrix of high electric and
thermal conductivity such as Cu or Al. In time-varying magnetic fields eddy currents will
be induced in these resistive matrices. In contrast to the hysteresis loss in the
superconductor, which only depends on the maximum magnetic induction, the eddy
current losses are frequency dependent. And therefore, the value of resistive loss is equal
to zero when the ramp rate is zero.

For measuring alternating current (AC) losses two methods are commonly used:
calorimetric and electrical. In the calorimetric method the volume of gas which is boiled
away by the AC loss power is measured. The electrical method of loss measurement
works by measuring the net power supplied to the coil. It is faster and more versatile than
the calorimetric method. The basic idea of this method is to multiply current by voltage
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and then to integrate the product electronically over one cycle. The electrical method is
best suited to the measurement of total loss in an isolated coil powered by an AC. In this
case it will give accurate results. If the coil is also subjected to fluctuating fields coming
from an external source this method will ignore some of the losses arising from work
done by these fields ['.

In the experiment Nb3Sn superconducting quadrupole magnet was used. Fig. 1
illustrates the properties of Nb3Sn. Also it shows the jc — Tc — Bc diagram of NbTi for
comparison. To describe these properties fully, it is necessary to insert terms of critical
current density (jc), critical temperature (Tc) and critical field (Bc). It can be seen from
this figure these values are bigger for Nb3Sn. All of these properties are related to each
other by the critical surface in BJT space where superconductivity prevails below this
surface and normal resistivity above it.

jc| Acm 2|

Fig. 1. The jc — Tc — Bc diagram of Nb3Sn and NbTi [*].

In order to support the necessary temperature level (in our case T ~ 4.2 K) we
should constantly cool the magnet because in real experiment energy losses always exist.
But we have to know the value of energy losses in the magnet for understanding how
much heat should we carry off.

Experimental setup

The schematic of the electrical superconducting (SC) magnet energy loss
measurement system is presented in the fig.2. A 16-Bit High-Speed Analog Output (DAC
6733) was used for generation a signal with a range of £10 V. Maximum level of current
was 30 000 A (transmission function for HOLEC is 3000 A/V). In experiments for
measuring AC energy losses a SC magnet was implemented and we pass excite the
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magnet with a triangle source with the amplitude of several thousands of amperes
(6 500 A). For measuring the voltage and the current 7 2 - digit flex millimeters (DMM
4071) are used.

For doing the calibration process the resistive load was used instead of the real
magnet and the amplitude of signal was varied from 0 to 12 A. The schematic is shown in
fig. 3. The current through the shunt and the voltage on the load were measured.
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Fig. 2. Energy loss measurement system for Vertical Magnet Test Facility (VMTF)
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Fig. 3. Energy loss measurement system for calibration
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The energy loss program was written in National Instruments LabView version 8.6.
The front panel of this program is presented in fig. 4. The user can setup test parameters
such as the ramp rate of a signal, the number of cycles, profiles and ramps, the time
dwell, the range of applied current and the level of the noise. After calculations the value
of energy loss per cycle and the mean root square deviation will be received. Profiles of
the waveform signal, of the current through the chain and the load voltage will be
presented in plots. Also it shows the energy verse ramp rate dependence. An example of
the energy loss code, eieo (for energy in — energy out), is presented in fig. 5. It

demonstrates the small part of the whole code associated with loading a waveform ramp
profile.
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Fig. 4. The front panel of the “eieo” program for energy loss calculation
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Fig. 5. The fragment of the block diagram of “eieo” program for energy loss calculation

The “eie0” program collects raw data from the DMMs, calculates the energy loss,
and writes the results to a “.txt” file. By formula (1) the value of energy loss in the SC
magnet can be calculated by integrating the power during the ramp cycle

W:jU-I-dt (1)

where U is the magnet voltage and I is the current through the chain.

Thus using different values for the ramp rate the measurements of AC losses as a
function of ramp rate were performed. After the linear fitting to the ramp rate data
corresponding to the AC loss hysteresis losses were determined (while the offset term or
where the ramp rate is equal to 0). The eddy current losses are determined by the slope of
the loss/cycle vs. ramp rate data for ramp rates <75 A/sec [*].

Results and discussion

1) Calibration of Lab View program for energy loss measurements without noise

For performing a calibration of the “eieo” program (the schematic is presented in
fig. 3) a precision load resistance is used in place of the SC magnet (transfer function is
10 A/20 mV) and ramped to low current via the DAC signal generator. The typical
profile of signal is presented in fig. 6.
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Fig. 6. Profile of signal (ramp rate SA/s)

Results of AC energy loss measurements are presented in fig. 7. Where
W1 - energy losses calculating using the program “eieo”,
W2 - energy losses calculating using the program Excel by the formula (2)

W2=(ZI,.-U,.)-% )

where t — the time of the signal, N — number of points,
W3 - energy losses calculating using the program Excel by the formula (3)

N
t
W3=R-3I>.— 3)
21y

where R=2mQ — the resistance of the load.
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Fig. 7. AC losses as a function of ramp rate

This figure shows a good correlation between theoretical predictions (W3) and
experimental results (W1). Thus the precision of measuring energy losses using the
“eieo” program is about 1%.

Also the series of experiments were performed for understanding the necessary
number of ramp profiles for correct statistics. Results are presented in fig. 8.

350
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N

Fig. 8. Mean root square deviation as a function of number of ramp profiles

09/21/2009 page 9 of 18



TD-09-021

Using the calculated data as the base the minimum number of ramp profiles is equal

to 5 because in excess of this value the mean root square deviation (sigma) is almost
constant.

2) Calibration of Lab View program for energy loss measurements with noise
In these experiments the noise was added as an additional sinusoidal signal to the
generator. The typical profile of signal is presented in fig. 9.

Rate Tirne

U
Profile  rron < | ?)'10—]5 124 11-hugns SRR |
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Fig. 9. Profile of signal (ramp rate 5A/s) with noise (amplitude 1 A, period 1s)

Results of AC energy loss measurements with noise are presented in fig. 10. Where
W1 - energy losses calculating using the program “eieo”,
W3 - energy losses calculating using the program Excel by the formula (3).

This figure shows a correlation between theoretical predictions (W3) and
experimental results (W1). Thus the precision of measuring energy losses using the
“eieo” program with noise is about 10%.
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Fig. 10. AC losses as a function of ramp rate
Values of additional energy losses caused by noise are listed in the table below for

different ramp rates. All values are obtained by “eieo” program. The conclusion from this
table: the more ramp rate the less energy losses both total and caused by noise.

ramp rate, A/s | W tot, J W noise, J sigma, J
2 1.77 0.025 240u
5 1.35 0.019 140y
7 1.27 0.018 2.3m
10 1.21 0.017 170

Table 1. Energy losses (total and caused by noise T=1s) for different ramp rates
In fig. 11 are presented the mean root square deviation (sigma) versus number of

ramp profiles response characteristic for different ramp rates. So the sigma value
becomes stable from N=5 as in the case without noise.
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Fig. 11. Mean root square deviation as a function of number of ramp profiles

For another period of noise signal (5s) the plots are the same, so they are simply
listed below (fig. 12, 13, table 2).
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Fig. 12. AC losses as a function of ramp rate
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Fig. 13. Mean root square deviation as a function of number of ramp profiles.

ramp rate, A/s W tot, J W noise, J sigma, J
2 1.77 0.025 | 220u
5 1.35 0.018 | 43m
7 1.27 0.018 | 40m
10 1.22 0.017 | 32m

Table 2. Energy losses (total and caused by noise T=5s) for different ramp rates.

3) Sampling rate dependence

Values of energy losses can be dependant from the sampling rate. So, for
understanding this response the measurements of losses for different sampling rates (0.1,
0.5, 1, 10 ms) with the noise level: T=1s, A=1 A were performed. The results for
different ramp rates are listed in the table 3. The values of energy losses in these
experiments are stable for listed ramp rates.

Ramp rate, A/s | Sampling rate, ms | W theory, J W tot, J ‘ sigma, J

2 0.1 1.63 1.79 350p

0.5 1.77 200y

1.78 450y

10 1.78 440y

5 0.1 1.41 1.36 390p

0.5 1.35 110y

1.35 110y

10 1.35 240p
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7 0.1 1.34 1.27 1.3m
0.5 1.27 1.1m

1 1.27 1.1m

10 1.27 1.6m

10 0.1 1.26 1.21 140p
0.5 1.21 210y

1 1.21 130p

10 1.21 120p

Table 3. Energy losses for different sampling rates.
4) Moving the end point

The real signal always combines with a noise signal in an experiment. For
performing a calibration of the program the sinusoidal noise was added to the initial
signal. For noise compensation it is necessary to determine the correct integration

Lend

interval. It should include the whole number of noise periods. The integral jUdt with a
0

correct endpoint should be equal to zero. So in the program the function of moving end
Leona

point was added. Fig. 14 shows the J.Udt variation with endpoint for calibration
0

experiment (the precise resistance was used instead of a real magnet and a sinusoidal

noise was added to the signal). The amplitude and the period of noise are listed in the plot

below. So the integration time should be equal to the whole number of noise periods.

6
—a—T=5s, A=1.5A
S —e—T=5s, A=1A
—a—T=4s, A=1.5A
4 —e—T=4s, A=1A
T=3s, A=1.5A
T=3s, A=1A

—a—T=2s, A=1.5A
—e—T=2s, A=1A
—a—T=1s, A=1.5A
—e—T=1s, A=1A

int (U*dt), mV*s

Fig. 14. .[ Udt as a function of noise period
0
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5) TQM-03 energy loss measurements
For doing the experiment with real magnet the KEPCO power supply had been

replaced on another one in Vertical Magnet Test Facility (VMTF) for performing
experiment [*]. The maximum value of the current during the cycle was 6500 A and the
minimum level was 500 A. An experiment with Test Quadrupole Mirror Magnet (TQM-
03) for measuring hysteresis and eddy current losses [] was performed. For different
ramp rates (110 A/s, 200 A/s, 250 A/s, 300 A/s) energy losses were calculated. One of the
profiles is presented in fig. 15. The signal from DMM 4071 is very noisy. This picture is
done for sampling rate 2000 Hz. After that the experiment with sampling rate 60 Hz (fig.
16) had been done. The noise level is much smaller for the sampling rate 60 Hz.
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Fig. 15. Profile of signal in TQM-03 (ramp rate 200 A/s, sampling rate 2000 Hz)
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Fig. 16. Profile of signal in TQM-03 (ramp rate 200 A/s, sampling rate 60 Hz)
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The results of total energy loss measurements are different for 2000 Hz (for ramp
rate 200 A/s — 535+1.7 J) and for 60 Hz (for ramp rate 200 A/s — 499+17 J). Also the data
for 2000 Hz sampling rate was taken and the values of current and of voltage were
averaged for every 30 points. For doing this procedure program on C++ was written.
After that using these modified data the energy loss was calculated (535 J), the same
value as for 2000 Hz sampling rate. The form of modified signal is presented in fig. 17.
When the sampling rate is increased, the additional losses caused by noise mode of 60 Hz
are included. As a result 60 Hz sampling rate is better for correct results. Fourier
transformation of the signal didn’t give a proper results because a small amount of

experimental points.
Rate Time

MHurm
Profile  firon | 4" Jemw ] 118 3t-Auges

k- I

Profile, A

0 10 20 3 40 SO &0 7O 80 90 100
Fig. 17. Profile of signal in TQM-03 (ramp rate 200 A/s, data sampling rate 2000 Hz,
after averaging the data)

The results for energy loss measurements were received for sampling rate 2000 Hz
and they are presented in fig. 18. For each ramp rate 5 profiles were obtained for
measuring the mean root square deviation for statistics. After linear approximation of this
data the value of hysteresis loss was determined, it is 406+5.3 J and the value of eddy
current loss is 632+24 mJ/(A/s) according to the equation (4).

W = (Ecl)-(R/r)+ (HI) “4)

where W — total value of energy losses, Ecl — eddy current losses, R/r — ramp rate, HI —
hysteresis loss.
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Fig. 18. Energy losses in TQM-03

Also a series of experiments were performed in which the end point of integration
Leona
was moved, the goal was to minimize the value of integral J.Udt (Uint). The results for
0
2000 Hz sampling rate are presented in table 4 where W is the energy loss with maximum
available time of integration, W_move is the energy loss after moving the end point.

Lend

According to these results the minimum level of jUdt is achieved for maximum
0

integration time and moving the end points is useless. It can be explained by decaying of

persistent current at the end of ramp cycle. According to theoretical predictions this

decaying time for this type of magnet is about 50 s.

Ramp rate, Als W, J W_move, J sigma, J Uint, mV Uint_move, mV
110 474 474 3.4 3.44 3.44
200 535 535 1.7 2.92 2.92
250 567 567 1.9 4.26 4.26
300 593 593 1.8 3.94 3.94

Table 4. Energy losses in SC magnet

Conclusions

In present paper the value of energy losses for Test Quadrupole Mirror Magnet
(TQM-03) was determined for temperature of the magnet 4.2 K. The maximum value of
the current during the heating cycle was 6500 A and the minimum level was 500 A. For
different ramp rates (110 A/s, 200 A/s, 250 A/s, 300 A/s) energy losses were calculated.
The value of hysteresis loss is 406+£5.3 ) and the value of eddy current loss is
632+24 mJ/(A/s). The dependence energy losses verse sampling rate was found out. An
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assumption that correct results (without inclusion energy losses due to the noise) can be
received with 60 Hz sampling rate was made.
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